SciELO - Scientific Electronic Library Online

 
vol.25 número1The development of a theoretical lean culture causal framework to support the effective implementation of lean in automotive component manufacturersA simplified numerical decision-making methodology for physical asset management decisions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Industrial Engineering

versión On-line ISSN 1012-277X

Resumen

RATSHIDAHO, T.T.; TAPAMO, J.R.; CLAASSENS, J.  y  GOVENDER, N.. An investigation into trajectory estimation in underground mining environments using a time-of-flight camera and an inertial measurement unit. S. Afr. J. Ind. Eng. [online]. 2014, vol.25, n.1, pp. 145-161. ISSN 1012-277X.

One of the most important and challenging tasks for mobile robots that navigate autonomously is localisation - the process whereby a robot locates itself within a map of a known environment or with respect to a known starting point within an unknown environment. Localisation of a robot in an unknown environment is done by tracking the trajectory of the robot on the basis of the initial pose. Trajectory estimation becomes a challenge if the robot is operating in an unknown environment that has a scarcity of landmarks, is GPS-denied, has very little or no illumination, and is slippery - such as in underground mines. This paper attempts to solve the problem of estimating a robot's trajectory in underground mining environments using a time-of-flight (ToF) camera and an inertial measurement unit (IMU). In the past, this problem has been addressed by using a 3D laser scanner; but these are expensive and consume a lot of power, even though they have high measurement accuracy and a wide field of view. Here, trajectory estimation is accomplished by the fusion of ego-motion provided by the ToF camera with measurement data provided by a low cost IMU. The fusion is performed using the Kalman filter algorithm on a mobile robot moving on a 2D planar surface. The results show a significant improvement on the trajectory estimation. A Vicon system is used to provide groundtruth for the trajectory estimation. Trajectory estimation only using the ToF camera is prone to errors, especially when the robot is rotating; but the fused trajectory estimation algorithm is able to estimate accurate ego-motion even when the robot is rotating.

        · resumen en Africano     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License