SciELO - Scientific Electronic Library Online

 
vol.24 número3Designing a framework to design a business model for the 'bottom of the pyramid' population índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


South African Journal of Industrial Engineering

versión On-line ISSN 2224-7890
versión impresa ISSN 1012-277X

Resumen

CHETTY, Sivashan  y  ADEWUMI, Aderemi O.. Studies in Swarm Intelligence techniques for annual crop planning problem in a new irrigation scheme. S. Afr. J. Ind. Eng. [online]. 2013, vol.24, n.3, pp.205-226. ISSN 2224-7890.

OPSOMMING Jaarlikse oesbeplanning is 'n NP-Hard soort optimiseringsprobleem in landbou beplanning. Dit behels die bepaal van optimale oplossing vir die seisoenale toekenning van 'n beperkte hoeveelheid landbougrond aan die verskeie mededingende gewasse. Hierdie artikel ondersoek die doeltreffendheid van drie relatiewe nuwe Swerm Intelligensie tegnieke om oplossings tot oesbeplanning by 'n nuwe besproeiingskema te vind. Die Swem Intelligensie tegnieke wat ondersoek is, is die Koekoek Soekmetode, die Vuurvliegie Algoritme en die Gloei-wurm Swerm Optimisering tegnieke. Die oplossings deur hierdie tegnieke verkry is vergelyk met dié verkry met die tradisionele Genetiese Algoritme. Dié vergelyking help om die relatiewe voordele van die nuwe Swerm Intelligensie tegnieke te bepaal. Die resultate toon dat die voorgestelde tegnieke beter oplossings as die tradisionele Genetiese Algoritme benadering gelewer het.

        · resumen en Inglés     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons