SciELO - Scientific Electronic Library Online

vol.22 número1An integrated methodology for layout design and work organisation in a furniture manufacturing plantUsing Poka-yoke methods to improve employment potential of intellectually disabled workers índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


South African Journal of Industrial Engineering

versão On-line ISSN 2224-7890
versão impressa ISSN 1012-277X


JAYAKUMAR, V.  e  RAJU, R.. A multi-objective genetic algorithm approach to the probabilistic manufacturing cell formation problem. S. Afr. J. Ind. Eng. [online]. 2011, vol.22, n.1, pp.199-212. ISSN 2224-7890.

Due to customised products, shorter product life-cycles, and unpredictable patterns of demand, manufacturing industries are faced with stochastic production requirements. It is unlikely that the production requirements (product mix and demand) are known exactly at the time of designing the manufacturing cell. However, a set of possible production requirements (scenarios) with certain probabilities are known at the design stage. Though a large number of research works on manufacturing cells have been reported, very few have considered random product mix constraints at the design stage. This paper presents a nonlinear mixed-integer mathematical model for the cell formation problem with the uncertainty of the product mix for a single period. The model incorporates real-life parameters like alternate routing, operation sequence, duplicate machines, uncertain product mix, uncertain product demand, varying batch size, processing time, machine capacity, and various cost factors. A solution methodology for best possible cell formation using a genetic algorithm (GA) is presented, and the computational procedure is illustrated for the case study undertaken.

        · resumo em Africaner     · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons