SciELO - Scientific Electronic Library Online

vol.21 número1Influence of self-motivation and intrinsic motivational factors for small and medium business growth: A South African case studyAn archival review of preferred methods for theory building in follower research índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


South African Journal of Economic and Management Sciences

versão On-line ISSN 2222-3436
versão impressa ISSN 1015-8812


KRITZINGER, Nico  e  VAN VUUREN, Gary W.. An optimised credit scorecard to enhance cut-off score determination. S. Afr. j. econ. manag. sci. [online]. 2018, vol.21, n.1, pp.1-15. ISSN 2222-3436.

BACKGROUND: Credit scoring is a statistical tool allowing banks to distinguish between good and bad clients. However, literature in the world of credit scoring is limited. In this article parametric and non-parametric statistical techniques that are used in credit scoring are reviewed. AIM: To build an optimal credit scoring matrix model to predict which clients will go bad in the future. This article also illustrates the use of the credit scoring matrix model to determine an appropriate cut-off score on a more granular level. SETTING: Data used in this article are based on a bank in South Africa and are Retail Banking specific. METHODS: The methods used in this article were regression, statistical analysis, matrix and comparative study. RESULTS: The matrix provides uplift in the Gini-coefficient when compared to a one-dimensional model and provides greater granularity when setting the appropriate cut-off. CONCLUSION: The article provides steps to construct a credit scoring matrix model to optimise separation between good and bad clients. An added contribution of the article is the manner in which the credit scoring matrix model provides a greater granularity option for establishing the cut-off score for accepting clients, more appropriately than a one-dimensional scorecard.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons