Serviços Personalizados
Artigo
Indicadores
Links relacionados
Citado por Google
Similares em Google
Compartilhar
The African Journal of Information and Communication
versão On-line ISSN 2077-7213
versão impressa ISSN 2077-7205
Resumo
ZHOU, Helper e GUMBO, Victor. Supervised Machine Learning for Predicting SMME Sales: An Evaluation of Three Algorithms. AJIC [online]. 2021, vol.27, pp.1-21. ISSN 2077-7213. http://dx.doi.org/10.23962/10539/31371.
The emergence of machine learning algorithms presents the opportunity for a variety of stakeholders to perform advanced predictive analytics and to make informed decisions. However, to date there have been few studies in developing countries that evaluate the performance of such algorithms-with the result that pertinent stakeholders lack an informed basis for selecting appropriate techniques for modelling tasks. This study aims to address this gap by evaluating the performance of three machine learning techniques: ordinary least squares (OLS), least absolute shrinkage and selection operator (LASSO), and artificial neural networks (ANNs). These techniques are evaluated in respect of their ability to perform predictive modelling of the sales performance of small, medium and micro enterprises (SMMEs) engaged in manufacturing. The evaluation finds that the ANNs algorithm's performance is far superior to that of the other two techniques, OLS and LASSO, in predicting the SMMEs' sales performance.
Palavras-chave : supervised machine learning; algorithms; sales predictive modelling; ordinary least squares (OLS); least absolute shrinkage and selection operator (LASSO); artificial neural networks (ANNs); small; medium and micro enterprises (SMMEs).
