SciELO - Scientific Electronic Library Online

 
vol.49 número4Chemical phosphate removal from Hartbeespoort Dam water, South AfricaCd(II) biosorption using bacterial isolates from sawdust: optimization via orthogonal array Taguchi method índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Water SA

versão On-line ISSN 1816-7950
versão impressa ISSN 0378-4738

Resumo

TAKAWIRA, Hilary  e  MBANGA, Joshua. Occurrence of multidrug-resistant Escherichia coli and antibiotic resistance genes in a wastewater treatment plant and its associated river water in Harare, Zimbabwe. Water SA [online]. 2023, vol.49, n.4, pp.396-403. ISSN 1816-7950.  http://dx.doi.org/10.17159/wsa/2023.v49.i4.4036.

Wastewater treatment plants (WWTPs) have been identified as point sources of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARG). Due to variations in antibiotic use and prescribing patterns in different countries, it is imperative to establish the presence of ARB and ARGs in water environments on a country-by-country basis. This study investigated the occurrence of 11 antibiotic-resistance genes (QNRB, DFR14, CTX-M, KPC, Sul1, QNRA, Sul2, ERMB, ERMA, SHV, NDM), and antibiotic-resistant Escherichia coli in a WWTP and its associated river water in Harare, Zimbabwe. 24 water samples were collected across 3 sites: upstream and downstream of the WWTP; final effluent of the WWTP. The samples were collected weekly for 8 weeks. Pure cultures of the E. coli isolates were obtained by membrane filtration (0.45 µm) and repeated streaking on Tryptone Bile X-glucuronide followed by biochemical tests (indole test; citrate test; motility, indole, and ornithine). Antibiotic resistance profiling was done for 12 antibiotics using the disc diffusion method. Total genomic DNA was extracted from the 21 water samples and the occurrence of 11 antibiotic-resistant genes investigated using conventional PCR. 86 E. coli isolates were obtained from the sampled sites: 28 from the upstream site, 26 from the WWTP effluent, and 32 from the downstream site. The results from chi-squared analysis showed a significant association (p < 0.05) between the sampling site and the percentage of antibiotic-resistant E. coli for all 12 antibiotics investigated. The percentage of E. coli isolates resistant to the tested antibiotics varied from 29% (ertapenem) to 80.2% (ciprofloxacin). 81 (94.2%) E. coli isolates were resistant to antibiotics from >3 classes. Eight (8/11, 72.7%) ARGs were detected in the WWTP effluent and river water samples. Results indicate that the investigated WWTP and associated river water are reservoirs of ARGs and antibiotic-resistant E. coli, which is a public health concern.

Palavras-chave : antibiotic resistance; wastewater treatment; Zimbabwe; Escherichia coli; antibiotic resistance genes.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons