SciELO - Scientific Electronic Library Online

 
vol.49 número1Baseline adjustment methodology in a shared water savings contract during severe water restrictions - a case study in the Western Cape, South AfricaPrivate sector impact investment in water purification infrastructure in South Africa: a qualitative analysis of opportunities and barriers índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Water SA

versão On-line ISSN 1816-7950
versão impressa ISSN 0378-4738

Resumo

MELAPHI, Kedibone et al. Adsorptive removal of BTEX compounds from wastewater using activated carbon derived from macadamia nut shells. Water SA [online]. 2023, vol.49, n.1, pp.36-45. ISSN 1816-7950.  http://dx.doi.org/10.17159/wsa/2023.v49.i1.3970.

In this study, adsorptive removal of benzene, toluene, ethylbenzene and xylenes (BTEX) from synthetic water using activated carbon adsorbent derived from macadamia nut shells was investigated. The surface functional groups of the synthesized adsorbents were assessed by Fourier transform infrared spectra. The specific surface area, pore size and pore volume at 77 K nitrogen adsorption, surface morphology, and the crystalline structure of the adsorbents were determined using Brunauer-Emmett-Teller, scanning electron microscopy and x-ray diffraction, respectively. Batch adsorption mode was used to evaluate the performance of the activated carbon. The stock solutions of synthetic wastewater were prepared by dissolving 100 mg/L of each of the BTEX compound into distilled water in a 250 mL volumetric flask. Effect of initial concentration of BTEX compounds, contact time, and mass of adsorbent on the removal of BTEX compounds from the synthetic wastewater was investigated. The macadamia nut shell-derived activated carbon (MAC) proved to be an effective adsorbent for BTEX compounds, with a large surface area of 405.56 m2/g. The exposure time to reach equilibrium for maximum removal of BTEX was observed to be 20 min. The adsorption capacity of the BTEX compounds by MAC followed the following adsorption order: benzene > toluene > ethylbenzene > xylene.

Palavras-chave : wastewater; activated carbon; adsorption; BTEX compounds; macadamia nut shell.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons