SciELO - Scientific Electronic Library Online

 
vol.48 issue1Evaluating the environmental and social net-worth of controlling alien plant invasions in the Inkomati catchment, South AfricaOccurrence of PAHs in water samples of the Diep River, South Africa author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

VAN DEVENTER, Heidi et al. Deriving the maximum extent and hydroperiod of open water from Sentinel-2 imagery for global sustainability and biodiversity reporting for wetlands. Water SA [online]. 2022, vol.48, n.1, pp.75-89. ISSN 1816-7950.  http://dx.doi.org/10.17159/wsa/2022.v48.i1.3883.

The monitoring of wetland extent is a global imperative, considering loss of ecosystem services and conservation value. To date, the understanding of the variation in the extent of lacustrine (inundated) wetlands has been limited, based on intermittently available, coarse-scale imagery. The aim of this study was to assess the capabilities of the freely available Sentinel-2 sensor in monitoring inundated wetlands. In particular, to demonstrate the ability to determine the maximum extent of inundation for reporting on the Sustainable Development Goal (SDG) 6.6 (Clean Water and Sanitation) and SDG 15.1 (i.e., halting biodiversity loss), the functional diversity and the hydrological regime of depressions were explored in the Mpumalanga Lake District (MLD) of South Africa. Using the monthly inundation data derived from Sentinel-2 images between January 2016 and May 2018, the results showed that the maximum extent of open water can be successfully reported for SDG 6.6. Lacustrine wetlands constituted about 47 of the 416 (but 66% of the total areal extent of) depressions in the MLD, while others were predominantly palustrine (vegetated). The functional diversity varied from predominantly (61% of the extent of) inundated depressions to seasonally (3%) inundated depressions. The Sentinel-2 sensor was able to detect intra- and inter-annual variation of the extent of inundation, making it suitable to monitor these wetlands for global and climate change impacts.

Keywords : Aichi Target 11 hydrological regime lacustrine wetlands Mpumalanga Lake District; MLD; open water monitoring Sustainable Development Goal; SDG; 6; 6 & 15.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License