SciELO - Scientific Electronic Library Online

 
vol.47 issue3Nutritional yield and nutritional water productivity of cowpea (Vigna unguiculata L. Walp) under varying irrigation water regimesInvestigating stable isotope effects and moisture trajectories for rainfall events in Johannesburg, South Africa author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

SEATON, Dylan  and  DUBE, Timothy. A new modified spatial approach for monitoring non-perennial river water availability using remote sensing in the Tankwa Karoo, Western Cape, South Africa. Water SA [online]. 2021, vol.47, n.3, pp.338-346. ISSN 1816-7950.  http://dx.doi.org/10.17159/wsa/2021.v47.i3.11862.

Non-perennial rivers (N-PRs) make up two thirds of all rivers in South Africa, yet many are ungauged. Traditionally, it has been assumed that when a flow is recorded, there is water throughout that river. These assumptions have led to incorrect estimations of available water resources. This work thus aimed at developing a new spatially explicit framework, for monitoring river water availability in a N-PR system. The Tankwa River in South Africa was used for testing this approach. The length of the river reach with water was determined using the Sentinel-1 and Sentinel-2 data derived indices. Image thresholding was applied to Sentinel-1, and the normalised difference water index (NDWI) to Sentinel-2. Sentinel-2 yielded an overall accuracy (OA) of 85%, whereas Sentinel-1 yielded an OA of 38%. The analysed reach of the Tankwa River had an actual length of 9 244 m. Based on the performance of Sentinel-2 data, further analysis was undertaken using Sentinel images acquired during the months of February, May and July of 2016. The results indicated that the lengths of the reaches of inundated Tankwa River were 2 809 m, 3 202 m and 2 890 m, respectively. Overall, the findings of this study show that an estimated length of a river inundated by water can be determined using new-generation Sentinel data and these results provide new insights on the dynamics of N-PRs - a previously challenging task with broadband multispectral satellite datasets.

Keywords : non-perennial rivers; remote sensing; water resource management; semi-arid environments; Sentinel-1 and -2 data; South Africa; synthetic aperture radar (SAR).

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License