SciELO - Scientific Electronic Library Online

 
vol.47 número2The use of Radon (Rn222) isotopes to detect groundwater discharge in streams draining Table Mountain Group (TMG) aquifersIncreasing nutrient influx trends and remediation options at Hartbeespoort Dam, South Africa: a mass-balance approach índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Water SA

versión On-line ISSN 1816-7950
versión impresa ISSN 0378-4738

Resumen

DANG, Nguyen Mai  y  ANH, Duong Tran. Integration of ANFIS with PCA and DWT for daily suspended sediment concentration prediction. Water SA [online]. 2021, vol.47, n.2, pp.200-209. ISSN 1816-7950.  http://dx.doi.org/10.17159/wsa/2021.v47.i2.10916.

Quantifying sediment load is vital for aquatic and riverine biota and has been the subject of various environmental studies since sediment plays a key role in maintaining ecological integrity, river morphology and agricultural productivity. However, predicting sediment concentration in rivers is difficult because of the non-linear relationships of flow rates, geophysical characteristics and sediment loads. It is thus very important to propose suitable statistical methods which can provide fast, accurate and robust prediction of suspended sediment concentration (SSC) for management guidance. In this study, we developed coupled models of discrete wavelet transform (DWT) with adaptive neuro-fuzzy inference system (ANFIS), named DWT-ANFIS, and principal component analysis (PCA) with ANFIS, named PCA-ANFIS, for SSC time-series modeling. The coupled models and single ANFIS model were trained and tested using long-term daily SSC and river discharge which were measured on the Schuylkill and Iowa Rivers in the United States. The findings showed that the PCA-ANFIS performed better than the single ANFIS and the coupled DWT-ANFIS. Further applications of the PCA-ANFIS should be considered for simulation and prediction of other indicators relating to weather, water resources, and the environment.

Palabras clave : machine learning; Schuylkill River; Iowa River; suspended sediment.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons