SciELO - Scientific Electronic Library Online

 
vol.46 número3Estimation of surface depression storage capacity from random roughness and slopeApplication of logistic model to estimate eggplant yield and dry matter under different levels of salinity and water deficit in greenhouse and outdoor conditions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Water SA

versión On-line ISSN 1816-7950
versión impresa ISSN 0378-4738

Resumen

KANDA, Edwin Kimutai; SENZANJE, Aidan; MABHAUDHI, Tafadzwanashe  y  MUBANGA, Shadrack Chisenga. Nutritional yield and nutritional water productivity of cowpea (Vigna unguiculata L. Walp) under varying irrigation water regimes. Water SA [online]. 2020, vol.46, n.3, pp.410-418. ISSN 1816-7950.  http://dx.doi.org/10.17159/wsa/2020.v46.i3.8651.

There is a need to mainstream traditional crops in sub-Saharan Africa, in order to tackle food and nutritional insecurity through incorporating nutritional quality into crop water productivity, in the wider context of the water-food-nutrition-health nexus. The objective of the study was to determine the effect of irrigation water regimes on the nutritional yield (NY) and nutritional water productivity (NWP) of cowpea under Moistube irrigation (MTI) and subsurface drip irrigation (SDI). We hypothesized that NY and NWP of cowpea were not different under MTI and SDI and that deficit irrigation improved NWP. The experiment was laid as a split-plot design arranged in randomized complete blocks, replicated 3 times, with 3 irrigation water regimes: 100% of crop evapotranspiration (ETc), 70% of ETc, and 40% of ETc. Irrigation type and water regime did not significantly (p > 0.05) affect the nutritional quality of cowpea. Similarly, NWP of crude fat (28.20-39.20 g∙m-3), ash (47.20-50.70 g∙m-3) and crude fibre (30.70-48.10 g∙m-3) did not vary significantly. However, protein and carbohydrate NWP showed significant (p < 0.05) differences across irrigation water regimes and irrigation type. The highest protein NWP (276.20 g∙m-3) was attained under MTI at 100% ETc, which was significantly (p < 0.05) higher than SDI (237.1 g∙m-3) and MTI (189.8 g∙m-3) at 40% ETc. Cowpea is suited for production in water-scarce environments; however, there are trade-offs with carbohydrate NWP. This should not be of concern as often diets are already energy-dense but lacking in other micronutrients.

Palabras clave : deficit irrigation; nutritional quality; proximate composition; subsurface irrigation; traditional legume.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons