SciELO - Scientific Electronic Library Online

 
vol.45 número2The occurrence of pathogenic Escherichia coli in South African wastewater treatment plants as detected by multiplex PCRThe impact of water quality on informally-declared heritage sites: a preliminary study índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Water SA

versión On-line ISSN 1816-7950
versión impresa ISSN 0378-4738

Resumen

NONO, Denis; ODIRILE, Phillimon T; BASUPI, Innocent  y  PARIDA, Bhagabat P. Assessment of probable causes of chlorine decay in water distribution systems of Gaborone city, Botswana. Water SA [online]. 2019, vol.45, n.2, pp.190-198. ISSN 1816-7950.  http://dx.doi.org/10.4314/wsa.v45i2.05.

Gaborone city water distribution system (GCWDS) is rapidly expanding and has been faced with the major problems of high water losses due to leakage, water shortages due to drought and inadequate chlorine residuals at remote areas of the network. This study investigated the probable causes of chlorine decay, due to pipe wall conditions and distribution system water quality in the GCWDS. An experimental approach, which applied a pipe-loop network model to estimate biofilm growth and chlorine reaction rate constants, was used to analyse pipe wall chlorine decay. Also, effects of key water quality parameters on chlorine decay were analysed. The water quality parameters considered were: natural organic matter (measured by total organic carbon, TOC; dissolved organic carbon, DOC; and ultraviolet absorbance at wavelength 254, UVA-254, as surrogates), inorganic compounds (iron and manganese) and heterotrophic plate count (HPC). Samples were collected from selected locations in the GCWDS for analysis of water quality parameters. The results of biofilm growth and chlorine reaction rate constants revealed that chlorine decay was higher in pipe walls than in the bulk of water in the GCWDS. The analysis of key water quality parameters revealed the presence of TOC, DOC and significant levels of organics (measured by UVA-254), which suggests that organic compounds contributed to chlorine decay in the GCWDS. However, low amounts of iron and manganese (< 0.3 mg/L) indicated that inorganic compounds may have had insignificant contributions to chlorine decay. The knowledge gained on chlorine decay would be useful for improving water treatment and network operating conditions so that appropriate chlorine residuals are maintained to protect the network from the risks of poor water quality that may occur due to the aforementioned problems.

Palabras clave : water distribution system; chlorine decay factors; bulk chlorine decay; pipe wall chlorine decay; water quality.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons