SciELO - Scientific Electronic Library Online

 
vol.45 número1Water use of selected grain legumes in response to varying irrigation regimesSynthesis and characterisation of ultrafiltration membranes functionalised with C18 as a modifier for adsorption capabilities of polyaromatic hydrocarbons índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Water SA

versión On-line ISSN 1816-7950
versión impresa ISSN 0378-4738

Resumen

AL-DOSARY, Naji Mordi N; AL-SULAIMAN, Mohammed A  y  ABOUKARIMA, Abdulwahed M. Modelling the unsaturated hydraulic conductivity of a sandy loam soil using Gaussian process regression. Water SA [online]. 2019, vol.45, n.1, pp.121-130. ISSN 1816-7950.  http://dx.doi.org/10.4314/wsa.v45i1.14.

Unsaturated soil hydraulic conductivity is a main parameter in agricultural and environmental studies, necessary for predicting and managing water and solute transport in soils. This parameter is difficult to measure in agricultural fields; thus, a simple and practical estimation method would be preferable, and quantitative methods (analytical and numerical) to predict the field parameters should be developed. Field experiments were conducted to collect water quality data to model the unsaturated hydraulic conductivity of a sandy loam soil. A mini disk infiltrometer (MDI) was used to measure soil infiltration rate. Input variables included electrical conductivity and the sodium adsorption ratio of irrigation water. Suction rate (pressure head), soil bulk density, and soil moisture content acted as inputs, with unsaturated soil hydraulic conductivity as output. The performance of Gaussian process regression (GPR) was analysed, with multiple linear regression (LR) and multi-layer perceptron (MLP) models used for comparison. Three performance criteria were compared: correlation coefficient (r), root mean square error (RMSE), and mean absolute error (MAE). The simulations employed the Waikato environment for knowledge analysis (WEKA) open source tool. The results indicate that the GPR with Pearson VII function-based universal kernel (PUK kernel), cache size 250007, Omega 1.0 and Sigma 1.0 performs better than other kernels when evaluating test split data, with a correlation coefficient of 0.9646. The RMSEs for GPR (PUK kernel), MLP, and LR were 1.16 × 1004, 1.87 × 1004, and 2.22 × 1004 cm·s1, respectively. Predictive data mining algorithms (DMA) enable an estimate of unknown values based on patterns in a database. Therefore, the present methodology can be put to use in predictive tools to manage water and solute transport in soils, as the GPR model provides much greater accuracy than the LR and MLP models in predicting the unsaturated hydraulic conductivity of a sandy loam soil.

Palabras clave : multiple linear regression; multi-layer perceptron; data mining; infiltration rate; water management.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons