SciELO - Scientific Electronic Library Online

vol.44 issue1Generating high-resolution digital elevation models for wetland research using Google EarthTM imagery: an example from South AfricaThreats and opportunities for post-closure development in dolomitic gold-mining areas of the West Rand and Far West Rand (South Africa) - a hydraulic view part 2: opportunities author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738


TALJAARD, S; VAN NIEKERK, L  and  LEMLEY, DA. A glimpse into the littoral nutrient dynamics of a lake system connected to the sea. Water SA [online]. 2018, vol.44, n.1, pp.65-74. ISSN 1816-7950.

In South Africa more than 80% of estuaries are small, dynamic and predominantly linear systems. Nutrient characteristics in these systems are mostly influenced by external catchment processes, except during extended periods of closure. However, a small percentage of the country's estuaries (< 3%) comprise larger estuarine lakes mostly evolved from drowned river valleys. The physical properties of these systems suggest relatively low flushing rates, and the potentially stronger influence of in-situ processes on nutrient characteristics. This study investigates dissolved inorganic nutrient dynamics in the littoral zones of these estuarine lake systems, and potential influencing factors, using the Wilderness Lake System as a case study. Comparison of inter-annual and seasonal trends in dissolved inorganic nutrients (NOx-N, NH4-N and PO4-P) in river inflow and in the three lakes confirmed that external catchment fluxes are most likely not the sole, or even the dominant drivers of average long-term or seasonal dissolved inorganic nutrient patterns in the lake littoral zones. Relatively low NOx:NH4 ratios (mostly less than 1) in the lakes (especially in Eilandvlei and Langvlei) indicated a stronger influence of in-situ processes, such as bacteriological remineralisation, similar to observations in other lake type systems with low flushing rates. Low NO3:NH4 ratios are known to stimulate cyanobacteria, having the metabolic ability to potentially produce microcystins. Therefore, incremental dissolved inorganic nutrient and organic matter enrichment may cause these systems to tip into eutrophic, possibly toxic, aquatic states that will be difficult, if not impossible, to reverse given their weak flushing mechanisms. The findings from this study highlight the importance of appropriate water resource management, both in the catchments and within the floodplains of estuarine lake systems.

Keywords : Wilderness; estuarine lake; littoral zone; dissolved inorganic nutrients; catchment fluxes; in-situ processes.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License