SciELO - Scientific Electronic Library Online

vol.44 número1Development of a coupled dispersive liquid-liquid micro-extraction with supported liquid phase micro-extraction for triclosan determination in wastewaterToxicity and biodegradability of caffeic acid in anaerobic digesting sludge índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google


Water SA

versión On-line ISSN 1816-7950
versión impresa ISSN 0378-4738


BOTES, Anthin; JAMES, Chris  y  SHERIDAN, Craig M. Assessing the clogging and permeability of degrading packed bed reactors. Water SA [online]. 2018, vol.44, n.1, pp.20-26. ISSN 1816-7950.

In South Africa, the need for water treatment is increasing, especially in the mining sector. As active water treatment technologies are expensive, the mining sector has an increasing need for passive water treatment technology, with low maintenance and operating costs, yet efficient water treatment ability. Literature on passive water treatment suggests that these systems only offer a narrow range of treatment capabilities. Therefore, hybrid water treatment systems could be a solution to low-cost water treatment in South Africa. The degrading packed bed reactor (DPBR) is one of the units comprising the hybrid treatment group. The DPBR's main action is to convert sulfates into sulfides and alkalinity, since this reduces the impact on the environment by increasing the pH and reducing the salinity. In this study, 6 small-scale DPBRs were constructed. Each was classified according to its unique organic source (manure, straw, vegetable food processing waste, wood shavings, chicken litter and a combined sample with layers of all the carbon sources). Synthetic acid mine drainage (AMD) was fed through the 6 bioreactors for a period of 3 months. Permeabilities, leachate samples and effective void volumes were measured from the DPBRs. From the experiments conducted, it was found that the manure and combination bioreactors (with equal layers of manure, straw, compost, wood shavings and chicken litter) had the lowest overall permeabilities, with straw and compost having the highest permeabilities. Linked to this, the experiments showed that the manure and combination bioreactors had the largest decreases in effective porosity with straw and compost having the least. Hydraulically, the combination bioreactor performed the best by incorporating the best attributes from each carbon source. Wood shavings preformed almost as well. Chicken litter clogged within 18 days after the initiation of the experiment and thus was the least effective substrate.

Palabras clave : degrading packed bed reactor; clogging.

        · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons