SciELO - Scientific Electronic Library Online

vol.43 issue3Life-history traits of Streptocephalus purcelli Sars, 1898 (Branchiopoda, Anostraca) from temporary waters with different phenologyChanging hydroclimatic and discharge patterns in the northern Limpopo Basin, Zimbabwe author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738


FARIDANI, Farid; FARID, Alireza; ANSARI, Hossein  and  MANFREDA, Salvatore. A modified version of the SMAR model for estimating root-zone soil moisture from time-series of surface soil moisture. Water SA [online]. 2017, vol.43, n.3, pp.492-498. ISSN 1816-7950.

Root-zone soil moisture at the regional scale has always been a missing element of the hydrological cycle. Knowing its value could be a great help in estimating evapotranspiration, erosion, runoff, permeability, irrigation needs, etc. The recently developed Soil Moisture Analytical Relationship (SMAR) can relate the surface soil moisture to the moisture content of deeper layers using a physically-based formulation. Previous studies have proved the effectiveness of SMAR in estimating root-zone soil moisture, yet there is still room for improvement in its application. For example, the soil water loss function (i.e. deep percolation and evapotranspiration), assumed to be a linear function in the SMAR model, may produce approximations in the estimation of water losses in the second soil layer. This problem becomes more critical in soils with finer textures. In this regard, the soil moisture profile data from two research sites (AMMA and SCAN) were investigated. The results showed that after a rainfall event, soil water losses decrease following a power pattern until they reach a minimum steady state. This knowledge was used to modify SMAR. In particular, SMAR was modified (MSMAR) by introducing a non-linear soil water loss function that allowed for improved estimates of root zone soil moisture.

Keywords : surface soil moisture; root-zone soil moisture; SMAR; soil water loss function; MSMAR.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License