SciELO - Scientific Electronic Library Online

 
vol.43 issue2Optimisation of methods for the collection and detection of bacterial pathogens from diarrhoeal human faecal samples using a novel stool collection kit author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

SCHACHTSCHNEIDER, Klaudia; CHAMIER, Jessica  and  SOMERSET, Vernon. Phytostabilization of metals by indigenous riparian vegetation. Water SA [online]. 2017, vol.43, n.2, pp.177-185. ISSN 1816-7950.  http://dx.doi.org/10.4314/wsa.v43i2.01.

Given the increasing pressure of man-made activities on riparian zones, the capacity of the riparian vegetation along the Upper Olifants River, South Africa, to phytoextract and phytostabilize aluminium (Al), manganese (Mn) and iron (Fe) from the soil was investigated. The aim of the study was to gain better understanding of the capacity of indigenous vegetation in riparian zones to immobilize metals in the soil, thereby improving river water quality and ecosystem services. Seven commonly-occurring pollution-tolerant riparian plant species were evaluated to establish their potential as bioaccumulators for Fe, Al and Mn. Species included: Cyperus haspan, Schoenoplectus corymbosus, Typha capensis, Phragmites australis, Cynodon dactylon, Cyperus marginatus and Juncus effusus, which were sampled in five riparian areas in the Upper Olifants catchment. The bioconcentration factor (BCF) for Mn was > 1 for all species investigated with a maximum of 5 for Typha capensis, which also showed the highest accumulation of Al (10.26) and Fe (7.03). The remaining species presented with Al and Fe BCF between 0.11 and 2.00, with minimal transfer from root to shoot. When measured against an ideal hypothetical buffer zone, the buffer zones under investigation varied between intact and severely compromised. Intact riparian zones showed elevated metal concentrations in the soil, yet significantly lower concentrations in the river water compared to areas with insufficient vegetative cover. A polluted riparian area overgrown by P. australis effectively phytoextracted 204 960 g/m2 Al, 204 400 g/m2 Fe and 27 887 g/m2 Mn. The two indigenous Cyperus spp. were not ideal for metal immobilization with low bioaccumulation and transfer factors as well as low biomass. High biomass and Al, Fe and Mn phytostabilizing species: P. australis, T. capensis, S. corymbosus and J. effusus, should be considered in the rehabilitation of South African buffer areas.

Keywords : riparian vegetation; heavy metals; acid mine drainage; phytostabilization; bioaccumulation.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License