SciELO - Scientific Electronic Library Online

vol.42 issue3Life-history traits of Streptocephalus purcelli Sars, 1898 (Branchiopoda, Anostraca) from temporary waters with different phenologyChanging hydroclimatic and discharge patterns in the northern Limpopo Basin, Zimbabwe author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738


RAVA, E et al. The use of exogenous microbial species to enhance the performance of a hybrid fixed-film bioreactor treating coal gasification wastewater to meet discharge requirements. Water SA [online]. 2016, vol.42, n.3, pp.483-489. ISSN 1816-7950.

The objective of this study was to determine whether inoculating a hybrid fixed-film bioreactor with exogenous bacterial and diatoma species would increase the removal of chemical oxygen demand, nitrogenous compounds and suspended solids from a real-time coal gasification wastewater to meet environmental discharge requirements specified for petrochemical refineries. The COD removal increased by 25% (45% to 70%) at a relatively high inoculum dosage (370 gm-3) and unit treatment cost (12.21 €-m-3). The molar ratio of monovalent cations to divalent cations (M/D >2) affected nitrification, settling of solids and dewatering of the sludge. The use of a low-charge cationic flocculant decreased the suspended solids in the effluent by 70% (180 mg-L-1 to 54 mg-L-1) and increased the sludge dewatering rate by 88% (61 s-L-g-1 to 154 s-L-g-1) at a unit treatment cost of 2.5 €-t-1 dry solids. Organic compounds not removed by the indigenous and exogenous microbial species included benzoic acids (aromatic carboxylic acids), 2-butenoic acid (short-chain unsaturated carboxylic acid), I(2H)-isoquinolinone (heterocyclic amine), hydantoins (highly polar heterocyclic compounds), long-chain hydrocarbon length (carbon length > C15) and squalene. These organic compounds can thus be classified as poorly degradable or nonbiodegradable which contributed to the 30% COD not removed by the H-FFBR. The use of exogenous microbial species improved the quality of CGWW; however, not sufficiently to meet discharge requirements. The cost of such treatment to meet discharge requirements would be unsustainable. Alternative technologies need to be investigated for reusing or recycling the CGWW rather than discharging.

Keywords : ammonia; catalytic reactor technology; COD; fixed-film bioreactor; hydantoins; thiocyanates.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License