SciELO - Scientific Electronic Library Online

vol.41 issue5Endocrine disrupting chemicals (phenol and phthalates) in the South African environment: a need for more monitoring author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738


DALLAS, HF  and  ROSS-GILLESPIE, V. Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. Water SA [online]. 2015, vol.41, n.5, pp.712-726. ISSN 1816-7950.

Water temperature is a key variable affecting aquatic organisms. Understanding their response to elevated water temperatures is important for estimating upper thermal limits, and ultimately for assisting with setting defendable, biologically-relevant water temperature guidelines for lotic systems. Sublethal effects impacting on an individual organism or species may manifest at higher levels of the hierarchy, namely, populations, communities and entire ecosystems. Sublethal effects typically include those affecting an organism's physiology and metabolism (e.g. growth rates, secondary productivity, respiration); phenology (e.g. development time, voltinism, emergence); reproductive success and fitness (e.g. fecundity, rates and success of egg development and hatching); behaviour (e.g. migration, movement, drift); and broad-scale ecological effects (e.g. species richness, composition, density, distribution patterns). Sublethal effects are discussed with examples drawn from freshwater studies, in particular those focused on aquatic insects. Commonly-used methods, which vary from simple, cost-effective, laboratory-based methods to more elaborate, expensive, laboratory- and field-based studies, are assimilated to serve as a toolbox for future thermal research. Ultimately, the method adopted depends largely on the question(s) being asked and available resources.

Keywords : biotic responses; experimental; riverine ecosystems; thermal research; tolerance.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License