SciELO - Scientific Electronic Library Online

 
vol.41 número5Assessing users' experience of shared sanitation facilities: a case study of community ablution blocks in Durban, South AfricaAbundance of pathogenic bacteria and viral indicators in chlorinated effluents produced by four wastewater treatment plants in the Gauteng Province, South Africa índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Water SA

versão On-line ISSN 1816-7950
versão impressa ISSN 0378-4738

Resumo

KOTZE, R; HALDENWANG, R; FESTER, V  e  ROSSLE, W. In-line rheological characterisation of wastewater sludges using non-invasive ultrasound sensor technology. Water SA [online]. 2015, vol.41, n.5, pp.683-690. ISSN 1816-7950.  http://dx.doi.org/10.4314/WSA.V41I5.11.

The performance of a new ultrasound transducer, which can measure velocity profiles non-invasively through high-grade stainless steel pipes, was evaluated for the first time with secondary wastewater sludges. This work is a follow-up study on the feasibility work initially done by the same authors. In-line process control based on accurate rheological characterisation for treated wastewater sludge could lead to significant savings in chemicals and will optimise dewatering processes producing drier sludges. In this work, a wastewater sludge at three concentrations was tested in order to investigate the capabilities of the in-line ultrasound technique for different viscosities and fluid properties. The rheological parameters obtained using the new ultrasound sensor and ultrasonic velocity profiling with combined pressure difference (UVP + PD) technique were compared with results obtained using conventional tube viscometry. Comparison with tube viscometer results showed that yield stresses could be overestimated by 120% if data are not available in the low shear-rate ranges. This non-invasive transducer proved to be sensitive enough to obtain flow curves over a large shear-rate range, improving the prediction of the yield stress and requiring about 50% less energy than the invasive system.

Palavras-chave : ultrasonic velocity profiling; UVP + PD methodology; sludge rheology; non-Newtonian; tube viscometry; non-invasive; sludge dewatering.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons