SciELO - Scientific Electronic Library Online

vol.41 número3Adaptive capacity and water governance in the Keiskamma River Catchment, Eastern Cape Province, South AfricaYield-reliability analysis and operating rules for run-of-river abstractions for typical rural water supply: Siloam Village case study índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Water SA

versão On-line ISSN 1816-7950
versão impressa ISSN 0378-4738


MOTAUNG, SR; ZVIMBA, JN; MAREE, JP  e  KOLESNIKOV, AV. Thermochemical reduction of pelletized gypsum mixed with carbonaceous reductants. Water SA [online]. 2015, vol.41, n.3, pp.369-374. ISSN 1816-7950.

The recovery of better quality waste gypsum during acid mine drainage (AMD) neutralization is one step closer to achieving downstream waste gypsum beneficiation for recovery of valuable materials. This can facilitate recovery of treatment costs and prevention of environmental pollution from gypsum waste-dumps. Thermal reduction using rotary kilns to recover valuable materials from waste gypsum remains a critical and controversial process because of waste gypsum handling problems, environmental pollution due to dust and gaseous emissions and poor conversion yields. In order to mitigate these problems and improve waste gypsum conversion yields, pelletization of waste gypsum in the presence of binders (starch and cellulose) was investigated. A laboratory-scale disc pelletizer was used to produce pellets from a mixture of coal and commercial gypsum or waste gypsum, generated during AMD neutralization, with starch and micro-crystalline cellulose used as binders. The pellets were subjected to high-temperature thermal treatment in a tube furnace to generate calcium sulphide (CaS), an important intermediate for waste gypsum beneficiation. The kinetics of thermal conversion of pelletized waste gypsum to CaS were found to be highly dependent on furnace temperature. Results also showed that pelletization affords improved handling of waste gypsum while use of binders as additives significantly improved the CaS yield, with starch giving the better yield compared to cellulose.

Palavras-chave : waste gypsum; binders; pelletization; tube furnace.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons