SciELO - Scientific Electronic Library Online

 
vol.40 número1Satellite-based annual evaporation estimates of invasive alien plant species and native vegetation in South AfricaThe decomposition of estuarine macrophytes under different temperature regimes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Water SA

versión On-line ISSN 0378-4738

Resumen

SITHEBE, Nomcebo P; METHULA, Bhekizizwe G  y  CHIRWA, Evans MN. A finite velocity simulation of sedimentation behaviour of flocculating particles - A real-time model evaluation. Water SA [online]. 2014, vol.40, n.1, pp. 109-116. ISSN 0378-4738.

A mechanistic velocity model is developed to simulate the behaviour of flocculating colloidal particles in turbid water. The current model is based on one-dimensional mass transport in the vertical direction as an integrated form of the model derived by Ramatsoma and Chirwa. The percentile removal model achieved more accurate simulation of physical experimental data than known models such as the Ozer's model and San's model. In this study, an integrated velocity form was used to estimate flocculent settling velocity of fine suspended particles under near quiescent conditions. Model closeness to experimental measurements was determined as a function of the sum of squares error (SSE) between model data and experimental data. The proposed velocity model offers a distinctive advantage over the interpolated-isopercentile based models which are prone to numerical errors during interpolation. The results contribute towards the ultimate goal of achieving full automation of the design of gravitational particle separation devices for water and wastewater treatment.

Palabras clave : flocculation model; semi-empirical system; velocity integrated model; continuity model.

        · texto en Inglés     · Inglés ( pdf )