SciELO - Scientific Electronic Library Online

 
vol.40 número1Significance and determination of fraction of non-separable particles of impurities in water purificationA finite velocity simulation of sedimentation behaviour of flocculating particles - A real-time model evaluation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Water SA

versión On-line ISSN 1816-7950
versión impresa ISSN 0378-4738

Resumen

MEIJNINGER, WML  y  JARMAIN, C. Satellite-based annual evaporation estimates of invasive alien plant species and native vegetation in South Africa. Water SA [online]. 2014, vol.40, n.1, pp.95-108. ISSN 1816-7950.

In this study we assessed the impact that invasive alien plant species (IAPs), and the clearing thereof by the Working for Water (WFW) programme, have on total evaporation (ET) and the availability of water resources in two highly-invaded provinces of South Africa. The Surface Energy Balance Algorithm for Land (SEBAL) model, using MODIS satellite imagery, was used to estimate the annual total ET at 250 m pixel resolution. ET was estimated for 3 climatically different years for the Western Cape and KwaZulu-Natal. The average annual ET from areas under IAPs, native vegetation, exotic plantation forestry species and control (clearing) areas were compared. The ET of the 5 dominant IAPs (Acacia mearnsii, Acacia saligna, Eucalyptus spp., Hakea spp. and Pinus spp.) in the Western Cape province was 895 mm, which was significantly higher than the ET of most of the native vegetation (thicket 575 mm and fynbos 520 mm), but similar to the ET of dominant exotic plantation forestry species (805 mm). On average, the ET was reduced by 13% to 780 mm, following clearing. In KwaZulu-Natal Province, the ET of the 5 dominant IAPs (Acacia mearnsii, Chromoleana odorata, Eucalyptus spp., Lantana camara and Solanum mauritanium) was 875 mm, which was also higher than the ET of the native vegetation (thicket 755 mm, savanna 685 mm and grassland 640 mm). Following IAP control the ET was decreased by 6%, to 825 mm. This study has demonstrated that spatial ET data with GIS-information on land use can be used to assess the impact of IAPs, and clearing thereof, on water resources. We confirmed results from previous studies, which showed that ET from invaded areas exceeded that from native vegetation. The ET data needs further validation as validation appeared to be impossible. Our results are likely conservative since the majority of invaded areas considered in this analysis represent non-riparian areas. The impact of WFW control of densely-invaded riparian areas is likely more pronounced. We concluded that the clearing of IAPs by the WFW programme has a positive effect on the availability of water resources through a reduction in ET.

Palabras clave : invasive alien plants; indigenous vegetation; remote sensing; water use; evapotranspiration; SEBAL; Western Cape; KwaZulu-Natal.

        · texto en Inglés     · Inglés ( pdf )