SciELO - Scientific Electronic Library Online

 
vol.40 issue1Generating high-resolution digital elevation models for wetland research using Google EarthTM imagery: an example from South AfricaThreats and opportunities for post-closure development in dolomitic gold-mining areas of the West Rand and Far West Rand (South Africa) - a hydraulic view part 2: opportunities author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

RADFORD, JT  and  SUGDEN, S. Measurement of faecal sludge in-situ shear strength and density. Water SA [online]. 2014, vol.40, n.1, pp.183-188. ISSN 1816-7950.

The provision of affordable urban sanitation presents a unique set of challenges as the lack of space and resources to construct new latrines makes it necessary to empty existing pits, typically done manually with significant health risks. Various mechanised technologies have been developed to facilitate pit emptying, which are currently either tested on faecal sludge or an 'ad-hoc' simulant that (in the opinion of the tester) approximately replicates the behaviour of faecal sludge. This ranges from a watery consistency in some pour-flush latrines to the strong soil found in many alternating pits, making it difficult to evaluate the effect of changes to a design, or to compare the performance of different pit-emptying technologies produced by different organisations in different countries. This study developed the portable penetrometer, a man-portable device to physically characterise pit latrine sludge through in-situ measurement of its shear strength. The machine produces continuous profiles of shear strength with depth and is capable of testing to approximately 2.5 m below the slab. The portable penetrometer was manufactured and tested in the UK, before profiling approximately 30 pits in Kampala, Uganda. The resulting data are compared to the literature on the physical properties of faecal sludge, and are found to significantly extend the measured strength range with a maximum value approximately 5 times higher than previously reported. The effect of physical remoulding is identified through comparison of data from undisturbed and remoulded strength tests and highlights the potential to increase the 'pumpability' of faecal sludge through in-pit fluidisation. The implications for the development of pit-emptying technologies and synthetic sludge simulants are discussed, and potential further work is identified. These include studies on factors affecting pit function and fill-up rates as well as scientific tests on the effect of modifications to latrines. In both cases any change in the physical properties of the faecal sludge can be identified through repeated profiling using the portable penetrometer. It is hoped that the penetrometer can contribute to an improved understanding of the physical properties of faecal sludge and the factors affecting pit function, supporting the development of improved faecal sludge management services.

Keywords : Density; faecal sludge; pit latrine; sanitation; shear strength.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License