SciELO - Scientific Electronic Library Online

 
vol.40 número1Crop production management practices as a cause for low water productivity at Zanyokwe Irrigation SchemeQuantifying the annual fish harvest from South Africa's largest freshwater reservoir índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Water SA

versão On-line ISSN 1816-7950
versão impressa ISSN 0378-4738

Resumo

HEY, G et al. Removal of pharmaceuticals in WWTP effluents by ozone and hydrogen peroxide. Water SA [online]. 2014, vol.40, n.1, pp.165-174. ISSN 1816-7950.

Ozonation to achieve removal of pharmaceuticals from wastewater effluents, with pH values in the upper and lower regions of the typical range for Swedish wastewater, was investigated. The main aim was to study the effects of varying pH values (6.0 and 8.0), and if small additions of H2O2 prior to ozone treatment could improve the removal and lower the reaction time. The effluents studied differed in their chemical characteristics, particularly in terms of alkalinity (65.3-427 mg·ℓ-1 HCO3-), COD (18.2-41.8 mg·ℓ-1), DOC (6.9-12.5 mg·ℓ-1), ammonium content (0.02-3.6 mg·ℓ-1) and specific UV absorbance (1.78-2.76 £-mg-1-m-1). As expected, lower ozone decomposition rates were observed in the effluents at pH 6.0 compared to pH 8.0. When pH 8.0 effluents were ozonated, a higher degree of pharmaceutical removal occurred in the effluent with low specific UV absorbance. For pH 6.0 effluents, the removal of pharmaceuticals was most efficient in the effluent with the lowest organic content. The addition of H2O2 had no significant effect on the quantitative removal of pharmaceuticals but enhanced the ozone decomposition rate. Thus, H2O2 addition increased the reaction rate. In practice, this will mean that the reactor volume needed for the ozonation of wastewater effluents can be reduced.

Palavras-chave : ozone; pharmaceuticals; hydrogen peroxide; wastewater effluents.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons