SciELO - Scientific Electronic Library Online

 
vol.40 issue1Crop production management practices as a cause for low water productivity at Zanyokwe Irrigation SchemeQuantifying the annual fish harvest from South Africa's largest freshwater reservoir author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

HEY, G et al. Removal of pharmaceuticals in WWTP effluents by ozone and hydrogen peroxide. Water SA [online]. 2014, vol.40, n.1, pp.165-174. ISSN 1816-7950.

Ozonation to achieve removal of pharmaceuticals from wastewater effluents, with pH values in the upper and lower regions of the typical range for Swedish wastewater, was investigated. The main aim was to study the effects of varying pH values (6.0 and 8.0), and if small additions of H2O2 prior to ozone treatment could improve the removal and lower the reaction time. The effluents studied differed in their chemical characteristics, particularly in terms of alkalinity (65.3-427 mg·ℓ-1 HCO3-), COD (18.2-41.8 mg·ℓ-1), DOC (6.9-12.5 mg·ℓ-1), ammonium content (0.02-3.6 mg·ℓ-1) and specific UV absorbance (1.78-2.76 £-mg-1-m-1). As expected, lower ozone decomposition rates were observed in the effluents at pH 6.0 compared to pH 8.0. When pH 8.0 effluents were ozonated, a higher degree of pharmaceutical removal occurred in the effluent with low specific UV absorbance. For pH 6.0 effluents, the removal of pharmaceuticals was most efficient in the effluent with the lowest organic content. The addition of H2O2 had no significant effect on the quantitative removal of pharmaceuticals but enhanced the ozone decomposition rate. Thus, H2O2 addition increased the reaction rate. In practice, this will mean that the reactor volume needed for the ozonation of wastewater effluents can be reduced.

Keywords : ozone; pharmaceuticals; hydrogen peroxide; wastewater effluents.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License