SciELO - Scientific Electronic Library Online

 
vol.39 issue5A survey of Vibrio cholerae O1 and O139 in estuarine waters and sediments of Beira, MozambiqueThe defouling of membranes using polymer beads containing magnetic micro particles author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

LIM, Jun-Wei et al. Response of low-strength phenol-acclimated activated sludge to shock loading of high phenol concentrations. Water SA [online]. 2013, vol.39, n.5, pp.695-700. ISSN 1816-7950.

The objectives of this study were to: (i) evaluate the growth of low-strength phenol-acclimated activated sludge, (ii) investigate the degradation pathways and (iii) model the growth and biodegradation kinetics, all under the condition of increasingly higher phenol concentrations (step-up shock loading). With the use of activated sludge acclimated to phenol concentration of 140 mg.ℓ-1 (low-strength phenol-acclimated activated sludge), complete degradation of phenol with a COD removal efficiency of more than 95% was achieved up to 1 050 mg.ℓ-1 of initial phenol concentration. At low initial phenol concentrations, the experimental results were indicative of the meta-cleavage pathway for phenol degradation. When the initial phenol concentration was above 630 mg.ℓ-1, the degradation results were indicative of both meta- and ortho-cleavage pathways. The values of the Haldane kinetic parameters indicated a low degree of inhibition exerted by the presence of increasing phenol concentration. This was substantiated by the observation that the rate constant of phenol removal decreased by only 33% even though the initial phenol concentration was increased by 15 times from 70 to 1 050 mg.ℓ-1. Thus, the activated sludge acclimated to only 140 mg.ℓ-1 of phenol could successfully treat up to 1 050 mg.ℓ-1 of phenol without experiencing complete inhibition during the degradation process.

Keywords : Phenol removal; low-strength phenol-acclimated activated sludge; degradation pathway; Haldane kinetic parameter.

        · text in English

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License