SciELO - Scientific Electronic Library Online

 
vol.39 número2Functionalisation of cross-linked polyethylenimine for the removal of As from mining wastewaterArthrospira (Spirulina) in tannery wastewaters Part 1: The microbial ecology of tannery waste stabilisation ponds and the management of noxious odour emissions using microalgal capping índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Water SA

versión On-line ISSN 0378-4738

Resumen

TROLLIP, DL; HUGHES, JC  y  TITSHALL, LW. Sources of manganese in the residue from a water treatment plant. Water SA [online]. 2013, vol.39, n.2, pp. 265-270. ISSN 0378-4738.

Disposal of water treatment residue (WTR), the by-product from the production of potable water, has traditionally been to landfill. The shortage of suitable landfill sites has led to the proposal that WTR be applied to land. Such disposal is only possible if the WTR contains no toxic elements that may contaminate soil, water or vegetation. Previous studies have shown that most WTRs in South Africa contain a high concentration of Mn, which was assumed to be from the drinking water treatment chemicals. This study investigated this assumption at one water treatment plant (WTP) in KwaZulu-Natal. Chemical analysis of drinking water treatment chemicals and a mass balance for Mn at the WTP showed that the main source of Mn was brown lime (added during the treatment process), although the raw water also added appreciable amounts of Mn to the WTR due to the volume of water treated. The concentration of Mn in the organic polymers, bentonite, ferric chloride, ferric sulphate and alum was negligible or very low. It is unlikely that the cost increase associated with changing from brown lime to white lime could be justified, given that the environmental impact of Mn is unclear and is generally not considered to be a problem internationally. Different ecosystems will respond differently to Mn loading and deriving a single, national, maximum permissible level for Mn within a WTR to permit land application is thus difficult and inappropriate.

Palabras clave : drinking water treatment chemicals; land application; manganese; water treatment residue.

        · texto en Inglés     · Inglés ( pdf )