SciELO - Scientific Electronic Library Online

 
vol.39 número1Electrocatalytic performance of PbO2 films in the degradation of dimethoate insecticidePedological criteria for estimating the importance of subsurface lateral flow in E horizons in South African soils índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Water SA

versão On-line ISSN 1816-7950
versão impressa ISSN 0378-4738

Resumo

DARKO, Godfred et al. Sorption of toxic metal ions in aqueous environment using electrospun polystyrene fibres incorporating diazole ligands. Water SA [online]. 2013, vol.39, n.1, pp.39-46. ISSN 1816-7950.

Electrospun polystyrene fibres incorporating potassium salts of pyrazole-l-carbodithioate and imidazole-l-carbodithioate were employed as sorbents for heavy metals from aqueous environments. The equilibrating time, initial metal concentrations and sorbent mass for optimal adsorption were 40 min, 5 mg/l and 8 mg, respectively. The optimal pH for metal ion uptake was between 6.3 and 9.0 and was found to be dependent on the basicity of the ligands. Protonation constants for the ligands in aqueous solutions were determined potentiometrically; pK of the imidazole was 6.82 while that of the pyrazole was 3.36. The efficiencies of adsorption and desorption of metals on the imidazolyl-incorporated sorbents were more than 95%, up to the fifth cycle of usage. The limits of quantification were < 0.0145 mg/l for all the metals. Accuracy of the determinations, expressed as relative error between the certified and observed values of certified reference groundwater samples was < 0.2% with relative standard deviations < 3%. Electrospun polystyrene fibres incorporating imidazoles proved to be efficient sorbents for divalent heavy metal ions in aqueous environments as their efficiencies exceeded those of chitosan microspheres, ion-imprinted composites, amino-functionalised mesoporous materials and most of the biomass-based sorbents previously reported on.

Palavras-chave : electrospinning; polystyrene; heavy metals; diazole.

        · texto em Inglês     · Inglês ( pdf )