SciELO - Scientific Electronic Library Online

 
vol.39 issue1Crop production management practices as a cause for low water productivity at Zanyokwe Irrigation SchemeQuantifying the annual fish harvest from South Africa's largest freshwater reservoir author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

DRIDI GARGOURI, O; SAMET, Y  and  ABDELHEDI, R. Electrocatalytic performance of PbO2 films in the degradation of dimethoate insecticide. Water SA [online]. 2013, vol.39, n.1, pp.31-37. ISSN 1816-7950.

This study was performed to find the best experimental conditions for the electrochemical removal of the insecticide dimethoate (C5H12NO3PS2) from aqueous solutions using a lead dioxide niobium anode. The process was studied under galvanostatic polarisation mode. The influence of applied current density (10-50 mA.cm-2), initial chemical oxygen demand COD0 (100-550 mg.l-1), temperature (30-70°C) and pH (3-11) on COD and instantaneous current efficiency (ICE) was studied. The results showed that almost 90% of COD removal was achieved under optimal experimental conditions, indicating that electrochemical oxidation on a PbO2 anode is a suitable method for treatment of water polluted with dimethoate. It was found that the decay of COD generally followed a pseudo first-order kinetic and the oxidation rate was favoured by increasing the applied current density, temperature, pH and initial COD. The greatest COD removal (90%) was obtained when using an applied current density of 50 mA.cm-2, COD = 320 mg.l-1, pH = 11, T = 70°C and electrolysis time = 8 h.

Keywords : Electrochemical degradation; hydroxyl radicals; organic pollutants; lead dioxide; wastewater.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License