SciELO - Scientific Electronic Library Online

 
vol.38 issue5Estimating the recreational value of freshwater inflows into the Klein and Kwelera estuaries: an application of the zonal travel cost methodNon-statutory barriers and incentives to stakeholder participation in reducing water pollution: a South African case study author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

BAMUZA-PEMU, Emomotimi E  and  CHIRWA, Evans MN. Photocatalytic degradation of geosmin: reaction pathway analysis. Water SA [online]. 2012, vol.38, n.5, pp.689-696. ISSN 1816-7950.

The presence of geosmin in drinking water imparts a musty odour which leads to consumer complaints. Geosmin and other unwanted organics can be treated using photocatalysis. However, the intermediates formed during the photocatalytic degradation process and their degradation pathways have not previously been described. In this study, the degradation profile, as well as the intermediates formed during the photocatalytic degradation of geosmin was monitored in an effort to obtain a better understanding of the degradation kinetics and pathway. Photocatalytic degradation of geosmin in the presence of radical scavengers was shown to be inhibited, as evidenced by the reduction in reaction rate coefficient (k') from 0.055 to 0.038 min"1. The hydroxyl radical reaction was thus shown to be the predominant process over direct photolysis by incident UV energy. Results from mass spectrum analysis of degradation intermediates indicate rapid fission of sp3l-sp3 (Cl-C) bonds resulting in ring opening of the cyclic geosmin structure. Bicyclic compounds that could be expected from dehydration and dehydrogenation of geosmin's ringed structure were not found among the detected intermediate products. Intermediates identified consisted of acyclic unsaturated alkenes, carbonyl compounds and some organic acids. Although the identified degradation products are not seen to be directly harmful, chlorine disinfection of water containing these compounds could produce potentially harmful halogenated hydrocarbons.

Keywords : photocatalysis; geosmin; 2-methylisoborneol (2-MIB); taste and odour; degradation intermediates.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License