SciELO - Scientific Electronic Library Online

 
vol.37 issue2The impact of water quality on informally-declared heritage sites: a preliminary study author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

MACHIELS, O et al. Theoretical and numerical analysis of the influence of the bottom friction formulation in free surface flow modelling. Water SA [online]. 2011, vol.37, n.2, pp.221-228. ISSN 1816-7950.

Bottom friction modelling is an important step in river flow computation with 1D or 2D solvers. It is usually performed using energy slope based formulations established for uniform flow conditions, or using a turbulent regime based approach relying on turbulence analysis. However, these formulations are often applied under conditions of relative roughness which lie far outside of their validity fields. Furthermore, the theoretical definition of the roughness coefficients, defined by the different authors of both approaches, is not valid for usual numerical flow modelling, considering numerical approximations. The value of this coefficient becomes generally dependent on the flow conditions. Following the definition of the flow validity field of the main friction formulations proposed in literature, an original formulation has been developed. It combines 2 explicit turbulent regime based formulations smoothly linked by a polynomial expression, providing a continuous formulation covering the wide range of roughness usually encountered in river flows. The formulation is suitable to model, with a unique value of the friction coefficient, river flows with a wide range of hydrodynamic properties (water depth, discharge). The efficiency of this new formulation, fitted to explicit friction formulations and numerically adjusted, is demonstrated through various 1D and 2D practical applications.

Keywords : friction; river flow; modelling.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License