SciELO - Scientific Electronic Library Online

 
vol.36 issue5Soil as indicator of hillslope hydrological behaviour in the Weatherley catchment, Eastern Cape, South AfricaInvestigation of potential water quality and quantity impacts associated with mining of the shallow Waterberg coal reserves, west of the Daarby Fault, Limpopo Province, South Africa author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

VAN HUYSSTEEN, CW; ZERE, TB  and  HENSLEY, M. Soil: water relationships in the Weatherley catchment, South Africa. Water SA [online]. 2010, vol.36, n.5, pp.521-530. ISSN 1816-7950.

Soil water content is influenced by soil and terrain factors, but studies on the predictive value of diagnostic horizon type for the degree and duration of wetness seem to be lacking. The aim of this paper is therefore to describe selected hydropedological soil-water relationships for important soils and diagnostic horizons in the Weatherley catchment. Daily soil water content was determined for 3 horizons in 28 profiles of the Weatherley catchment. These data were used to calculate annual duration of water saturation above 0.7 of porosity (AD ), which was correlated against other soil properties. Significant correlations (α = 0.05) were obtained between average degree of water saturation per profile and slope (R2 = 0.24), coarse sand content (R2 = 0.22), medium sand content (R2 = 0.23), fine silt content (R2 = 0.19), and clay content (R2 = 0.38). AD per diagnostic horizon ranged from 21 to 29 d•yr-1 for the red apedal B, yellow brown apedal B, and neocutanic B horizons; 103 d•yr-1 for the orthic A horizons; and from 239 to 357 d•yr-1 for the soft plinthic B, unspecified material with signs of wetness, E, and G horizons. A regression equation to predict AD from diagnostic horizon type (DH), clay to sand ratio (Cl:Sa), and underlying horizon type (DH ) gave: AD = -26.31 + 41.64 ln(Cl:Sa) + 35.43 DH + 13.73 DH (R2 = 0.78).Results presented here emphasise the value of soil classification in the prediction of duration of water saturation.

Keywords : diagnostic horizon; model; slope; soil texture; water saturation.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License