SciELO - Scientific Electronic Library Online

vol.36 issue3Biological sulphate reduction with primary sewage sludge in an upflow anaerobic sludge bed reactor - Part 6: Development of a kinetic model for BSRRemoval of copper(II) from aqueous solution using spent tea leaves (STL) as a potential sorbent author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738


SHIKONGO-NAMBABI, MNNN; KACHIGUNDA, B  and  VENTER, SN. Evaluation of oxidising disinfectants to control Vibrio biofilms in treated seawater used for fish processing. Water SA [online]. 2010, vol.36, n.3, pp.215-220. ISSN 1816-7950.

Marine fish-processing plants often use seawater during their operations. Chlorination and UV are commonly used for disinfection of this water but may not be effective in preventing biofilm formation within the water distribution network. These biofilms negatively impact water quality and could lead to contamination of fish products. During a recent study, Vibrio alginolyticus strains were detected on processed hake. The presence of most Vibrio spp. on fish products is of consumer safety concern and needs to be minimised. Water treatment strategies effective for seawater disinfection but with minimal negative effect on fish quality are required. In this study the effectiveness of chlorine, ozone and hydrogen peroxide (H2O2) in the inhibition of mature biofilms or biofilm formation in natural seawater was investigated. Two V. alginolyticus strains (V590 and V595) isolated from hake fish as well as the type strains of V. alginolyticus LMG 4409 and V. parahaemolyticus LMG 2850 were used. Chlorine was ineffective as experiments showed that strains V590, V595 and V. parahaemolyticus LMG 2850 could form biofilms even in the presence of 4 mg/ℓ of chlorine. When ozone was used, biofilm initiation and formation were completely inhibited for only 2 strains of V. alginoluticus, i.e. LMG 4409 and V590, at 1.6 mg/ℓ or 0.8 mg/ℓ ozone, respectively. Hydrogen peroxide performed the best of all the disinfectants evaluated in this study. Inhibition of biofilm formation was observed for all strains at 0.05% H2O2. The mature biofilms were more resistant to H2O2 but were all eliminated at 0.2% concentrations. This study indicated that H2O2 is the most effective biocide to prevent biofilm formation in seawater distribution networks and could potentially be used as an alternative or supplementary disinfectant of seawater in marine fish-processing plants.

Keywords : V. alginolyticus; V. parahaemolyticus; biofilms; H2O2; disinfection; seawater.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License