SciELO - Scientific Electronic Library Online

vol.36 issue1 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Water SA

On-line version ISSN 0378-4738


HOFFMANN, E  and  WINDE, F. Generating high-resolution digital elevation models for wetland research using Google EarthTM imagery: an example from South Africa. Water SA [online]. 2010, vol.36, n.1, pp. 53-68. ISSN 0378-4738.

Digital elevation models (DEM) generated in geographical information systems (GIS) have proven to be useful tools in hydrological research, aiding, amongst others, the delineation of catchment areas, identification of drainage patterns and flow pathways as well as for runoff determinations. They are of particular value in areas of comparatively flat topography, where such tasks are often difficult to perform. However, owing to the fact that elevation differences in wetlands typically fall below or just into the range of contour intervals of standard topographic maps being generally 20 m, and 5m for some areas, the latter fail to give enough detail. This means that sufficiently detailed relief information is often difficult to obtain for wetland research. Site-specific, high-resolution relief surveys are too expensive, relative to many research budgets, to constitute a viable alternative. Based on an approximately 12 km2 study area surrounding a karst-related peatland, this paper presents a method to retrieve the required high-resolution elevation data at 1 m intervals, at low cost, from satellite imagery in Google EarthTM. The paper describes procedures used to capture and process the data using GIS ArcDesktopTM to produce a high-resolution contour map and DEM. For quality assurance purposes the generated map is visually compared to 5 m and 20 m contour intervals of standard topographic maps (1:50000) issued by the Chief Directorate Surveys and Mapping (CDSM). After correcting an off-set of 5 m it was found that the deviation of the generated contour map based on Google data from CDSM contours was in the same order as the deviation between the 2 CDSM contour sets. Finally, all 3 contour maps were compared to a contour map of 0.5 m-interval resolution specifically generated for the study area using aerial photography from an airborne survey. This too confirmed the overall good reliability of the generated, Google EarthTM-based, contour map. Although Google EarthTM's contour models are based on data of the Shuttle Radar Topography Mission (SRTM), the direct use of freely available SRTM data for localised, high-resolution DEM yielded unsatisfactory results. This may be due to (unspecified) procedures, or unknown data sources employed by Google EarthTM that enhance the quality of relief data. With updating intervals of 2 to 4 years, satellite imagery in Google EarthTM offers the additional advantage of containing much more recent information on relevant hydrological features than the outdated topographic maps available for the study area. It is concluded that the presented method allows the generation of high-resolution DEMs especially for areas of flat topography where adequate relief information is either not available or too costly to generate. These DEMs are useful for further wetland research.

Keywords : digital elevation model; DEM; Google Earth; GIS; wetland; hydrology; relief; contour intervals; Gerhard Minnebron peatland; SRTM; topographic maps.

        · text in English     · pdf in English