SciELO - Scientific Electronic Library Online

 
vol.34 issue1 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Water SA

On-line version ISSN 1816-7950
Print version ISSN 0378-4738

Abstract

HUO, Shou-liang et al. A laboratory simulation of in situ leachate treatment in semi-aerobic bioreactor landfill. Water SA [online]. 2008, vol.34, n.1, pp.133-140. ISSN 1816-7950.

In this study, two laboratory-scale simulated landfill bioreactors were established, of which Reactor A was operated only with leachate recirculation and served as the control, and Reactor B was operated as semi-aerobic bioreactor landfill with leachate recirculation. In situ leachate treatment and accelerating organic decomposition in semi-aerobic bioreactor landfill was investigated. The results indicated that the introduction of air into the landfill was favourable for optimising the micro-organism growth environment and accelerating the degradation of organic matter. It can be seen clearly from the results that NH4+-N can be removed in situ in the semi-aerobic bioreactor landfill with leachate recirculation. Moreover, semi-aerobic bioreactor landfill showed lower emissions for leachate than those in leachate from anaerobic landfill, with low concentrations of COD, VFA, NH4+-N and TKN, and which saved the disposing process of the discharged leachate. The three-dimensional excitation-emission matrix fluorescence spectroscopy (EEMs) of dissolved organic matter (DOM) in Reactor B changed greatly, and fluorescence peak changed from protein-like fluorescence at Day 60 to humic-like fluorescence at Day 95 and 250, while in Reactor A, fluorescence peak of DOM was always protein-like fluorescence. The comparison of the EEMs indicated that the semi-aerobic landfill accelerated the organic decomposition.

Keywords : semi-aerobic landfill; bioreactor landfill; three-dimensional excitation-emission matrix fluorescence spectroscopy (EEMs); in situ leachate treatment.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License