SciELO - Scientific Electronic Library Online

 
vol.21 issue4Osteogenesis imperfecta: an overview author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


SA Orthopaedic Journal

On-line version ISSN 2309-8309
Print version ISSN 1681-150X

Abstract

PRETORIUS, Henry S; BURGER, Marilize C  and  FERREIRA, Nando. The mechanical testing of a novel interlocking forearm nail. SA orthop. j. [online]. 2022, vol.21, n.4, pp.223-227. ISSN 2309-8309.  http://dx.doi.org/10.17159/2309-8309/2022/v21n4a6.

BACKGROUND: Mechanical testing of newly designed implants provides valuable insight into their mechanical properties. This provides surgeons with information about implant choice for the treatment of fractures and the effect of the implant's mechanical properties on fracture healing METHODS: A novel interlocking forearm nail was subjected to standardised mechanical testing according to the Standard Specification and Test Methods for Intramedullary Fixation Devices (ATSM 126416), using static and dynamic four-point bending and static torsion (ASTM STP 588). Three nails were used for the static bending and torsion and nine for the dynamic bending tests. All nails were catalogued, numbered and photographed before testing RESULTS: The mechanical testing results showed a mean force yield (Fy) of 566 ± 20 N, a moment of yield (My) 10.75 ± 0.37 Nm, a stiffness of 67.10 ± 2 N/mm and structural stiffness of 1.53 ± 0.50 m2. The torsional stiffness of the nail was 0.088 ± 0.002 Nm/°. The four-point dynamic bending test showed a fatigue strength of 5.23 Nm. This value was determined using the semi-log moment/ number of cycles (M-N) diagram and showed a 50% failure at a million cycles. If the moment were reduced to 4.4 Nm, mathematically, the survival rate would improve to 90% CONCLUSION: The results from this mechanical testing show that this novel intramedullary forearm nail can resist mechanical forces experienced during fracture healing and could potentially be used in future clinical studies Level of evidence: Level 4

Keywords : mechanical testing; ASTM; load; yield; stiffness; fatigue strength.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License