SciELO - Scientific Electronic Library Online

 
vol.28 issue3Comparison between two different solution-pumping methods in absorption refrigeration machines author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of Energy in Southern Africa

On-line version ISSN 2413-3051
Print version ISSN 1021-447X

Abstract

MAFIMIDIWO, Olufunmilayo Alice  and  SAHA, Akshay Kumar. Optimising concentrated thermal photovoltaic energy systems for green and sustainable energy generation. J. energy South. Afr. [online]. 2017, vol.28, n.3, pp.54-65. ISSN 2413-3051.  http://dx.doi.org/10.17159/2413-3051/2017/v28i3a1602.

Electricity generated from a concentrated thermal photovoltaic system can be improved upon for optimum output. This investigation considered the various options of optimising system operation via effective control of the operating conditions. It examined various options of varying the system configurations for optimised system efficiency and power output and at minimum operating costs. The number of mirrors and photovoltaic cells for use in the concentrated thermal photovoltaic system were set at eight as standard for the system operation. This number was varied down and up (from eight to six and then from eight to ten) to study the effects of these variations on the concentrated thermal photovoltaic system efficiency and generated power output. A novel thermal model was built in two dimensions and was used to simulate the thermal performance of the concentrated thermal photovoltaic modules. The parameters used for the materials involved were defined and the appropriate physics applied in the study of various operating conditions that affected the system performance for the two-dimensional system were stated. The results showed that temperature rise was least in the ten mirrors configuration and highest in the six mirrors configuration. The six PV cells-mirrors configuration, however, generated the highest power output of the three different configurations considered. The six PV cells/mirrors configuration utilised the least numbers of mirrors and PV cells out of the three configurations, ultimately translating to reduced-materials cost for the operation. Based on these findings, the choice of the lower number of six mirrors and six PV cells was considered the most economical and, therefore, most desirable.

Keywords : optimal output; concentrated thermal photovoltaic system; operating conditions; two-dimensional system; efficiency and power output.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License