SciELO - Scientific Electronic Library Online

 
vol.24 issue1Use of artificial roughness to enhance heat transfer in solar air heaters - a review author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of Energy in Southern Africa

On-line version ISSN 2413-3051
Print version ISSN 1021-447X

Abstract

GERBER, JD; BENECKE, MA; VORSTER, FJ  and  VAN DYK, EE. Thermal modelling of low concentrator photovoltaic systems. J. energy South. Afr. [online]. 2013, vol.24, n.1, pp.00-00. ISSN 2413-3051.

Efficient thermal management of low concentrator photovoltaic (LCPV) systems will allow maximizing of the power output and may also substantially prolong operating lifetime. For this reason, it is necessary to develop a thorough understanding of the thermal transfer and dissipation mechanisms associated with an LCPV system. The LCPV system under consideration uses a 7-facet reflector optical design, providing a geometric concentration ratio of approximately 4.85. The LCPV system succeeded in increasing the short circuit current from 1A to 5.6A, demonstrating an effective concentration ratio of approximately 4.75. LCPV system temperatures in excess of 80°C were recorded without a thermal management system. A basic thermal model was developed and assessed under various environmental conditions. The effectiveness of a heat-sink, which reduced the temperature difference between the LCPV receiver temperature and the ambient temperature by 37.5%, was also evaluated. The results discussed in this paper will assist the future development of techniques aimed at reducing the high temperatures associated with LCPV systems.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License