SciELO - Scientific Electronic Library Online

vol.23 número3Performance of A R22 split-air-conditioner when retrofitted with ozone friendly refrigerants (R410A and R417A)Reliability worth assessment of electricity consumers: A South African case study índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


Journal of Energy in Southern Africa

versão On-line ISSN 2413-3051
versão impressa ISSN 1021-447X


CHIKOBVU, Delson  e  SIGAUKE, Caston. Regression-SARIMA modelling of daily peak electricity demand in South Africa. J. energy South. Afr. [online]. 2012, vol.23, n.3, pp.23-30. ISSN 2413-3051.

In this paper, seasonal autoregressive integrated moving average (SARIMA) and regression with SARIMA errors (regression-SARIMA) models are developed to predict daily peak electricity demand in South Africa using data for the period 1996 to 2009. The performance of the developed models is evaluated by comparing them with Winter's triple exponential smoothing model. Empirical results from the study show that the SARIMA model produces more accurate short-term forecasts. The regression-SARIMA modelling framework captures important drivers of electricity demand. These results are important to decision makers, load forecasters and systems operators in load flow analysis and scheduling of electricity.

Palavras-chave : daily peak demand; SARIMA; regression-SARIMA; short term load forecasting.

        · texto em Inglês     · Inglês ( pdf )