SciELO - Scientific Electronic Library Online

 
vol.63 número4Methodological approach for the compilation of a water distribution network model using QGIS and EPANET índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


Journal of the South African Institution of Civil Engineering

versão On-line ISSN 2309-8775
versão impressa ISSN 1021-2019

Resumo

SMIT, M S  e  KEARSLEY, E P. Load spreading in ultra-thin high-strength steel-fibre-reinforced concrete pavements. J. S. Afr. Inst. Civ. Eng. [online]. 2021, vol.63, n.4, pp.45-52. ISSN 2309-8775.  http://dx.doi.org/10.17159/2309-8775/2021/v63n4a5.

Ultra-Thin Continuously Reinforced Concrete Pavement (UTCRCP) consists of a 50 mm thin High-Strength Steel-Fibre-Reinforced Concrete (HS-SFRC) overlay placed on existing pavements as rehabilitation or used as part of new pavements. Difficulties have been experienced with the construction of UTCRCP. Additionally, the thin HS-SFRC has superior fatigue properties, but poor load-spreading ability compared to conventional concrete pavements due to its reduced thickness. This results in high deflections when the pavement is loaded. The substructure of UTCRCP plays an important role in its performance. Cement-stabilised granular materials can be used to ensure gradual load spreading with depth, but its behaviour under flexible concrete layers is not yet well understood. In this study the effect of increasing the HS-SFRC layer thickness and the effect of incorporating cement-stabilised base layers were investigated using linear elastic finite element modelling. From stress levels calculated, it was found that C1 and C2 materials perform well underneath a 50 mm HS-SFRC layer subjected to standard axle loads of 80 kN, while C3 and C4 would deteriorate faster. Stabilised layers placed below a thin, flexible concrete layer may however crack, resulting in increased damage to supporting layers. It is recommended that the response of UTCRCP should be investigated using advanced material models for the cement-stabilised base and other substructure layers.

Palavras-chave : ultra-thin concrete pavements; cement-stabilised bases; finite element modelling; load spreading.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons