SciELO - Scientific Electronic Library Online

 
vol.61 número3 índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the South African Institution of Civil Engineering

versión On-line ISSN 2309-8775
versión impresa ISSN 1021-2019

Resumen

ROBINSON, A  y  VENTER, C. Validating traffic models using large-scale Automatic Number Plate Recognition (ANPR) data. J. S. Afr. Inst. Civ. Eng. [online]. 2019, vol.61, n.3, pp.45-57. ISSN 2309-8775.  http://dx.doi.org/10.17159/2309-8775/2019/v61n3a5.

The development of reliable strategic traffic models relies on comprehensive and accurate data, but traditional survey methods are time-consuming and expensive. Manual surveys often yield small samples that require estimated expansion factors to enable the data to represent the population. Modellers have turned to new data sourced from various electronic devices to improve the reliability of the data. Automatic Number Plate Recognition (ANPR) data is one such data source that can be used to extract travel time, speed and partial origin-destination (OD) information. This study assesses ANPR data in terms of its comprehensiveness and accuracy, and shows how it can be used for the validation of strategic traffic models. Data was obtained from the Gauteng freeway system's Open Road Tolling (ORT) gantries for a period of several months. A new methodology is developed to process traffic model outputs such that they are directly comparable to the partial origin-destination outputs derived from the ANPR data. It is shown that comparing the model distribution against observed ANPR data highlights potential trip distribution issues that are not detected using standard model validation techniques.

Palabras clave : ANPR; traffic models; origin-destination; validation.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons