SciELO - Scientific Electronic Library Online

 
vol.57 número2Numerical modelling for the evaluation of progressive damage to plain concrete structuresThe status of talent management in the South African consulting civil engineering industry in 2008: a survey índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • En proceso de indezaciónSimilares en Google

Compartir


Journal of the South African Institution of Civil Engineering

versión On-line ISSN 2309-8775
versión impresa ISSN 1021-2019

Resumen

ARCHER, A  y  HEYMANN, G. Using small-strain stiffness to predict the load-settlement behaviour of shallow foundations on sand. J. S. Afr. Inst. Civ. Eng. [online]. 2015, vol.57, n.2, pp.28-35. ISSN 2309-8775.  http://dx.doi.org/10.17159/2309-8775/2015/v57n2a4.

Foundation settlement prediction is a challenging task due to the difficulties associated with the quantification of the soil stiffness and the abundance of available analysis methods. Of the different soil stiffness moduli that may be measured, the initial small-strain stiffness is important since it can be measured both in the field and the laboratory, and settlement prediction methods using this parameter are becoming more common. The objective of this paper is to present a settlement prediction method for shallow foundations that only uses small-strain stiffness as input parameter. The method was developed by conducting physical modelling in the geotechnical centrifuge at the University of Pretoria to quantify the behaviour of shallow foundations on sand. Bender and extender elements were used to obtain the small-strain stiffness profile below the foundation before it was vertically loaded and the load-settlement curve determined. The tests were conducted on different density sands corresponding to loose, medium-dense and dense sand. A non-linear stepwise analysis approach was used in conjunction with a softening function, with variables calibrated to obtain the best fit solution for the different sand densities. Results indicate that the accuracy of the proposed method decreases as the sand density increases, but that load-settlement behaviour can be predicted with reasonable accuracy.

Palabras clave : small-strain stiffness; foundation settlement; centrifuge testing; softening function.

        · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons