SciELO - Scientific Electronic Library Online

 
vol.55 issue1Partial factors for selected reinforced concrete members: background to a revisionof SANS 10100-1 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the South African Institution of Civil Engineering

On-line version ISSN 2309-8775
Print version ISSN 1021-2019

Abstract

DITHINDE, M  and  RETIEF, J V. Pile design practice in southern Africa Part I: Resistance statistics. J. S. Afr. Inst. Civ. Eng. [online]. 2013, vol.55, n.1, pp.60-71. ISSN 2309-8775.

The paper presents resistance statistics required for reliability assessment and calibration of limit state design procedures for pile design reflecting southern African practice. The first step of such a development is to determine the levels of reliability implicitly provided for in present design procedures based on working stress design. Such an assessment is presented in an accompanying paper (please turn to page 72). The statistics are presented in terms of a model factor M representing the ratio of pile resistance interpreted from pile load tests to its prediction based on the static pile formula. A dataset of 174 cases serves as sample set for the statistical analysis. The statistical characterisation comprises outliers detection and correction of erroneous values, using the corrected data to compute the sample moments (mean, standard deviation, skewness and kurtosis) needed in reliability analysis. The analyses demonstrate that driven piles depict higher variability compared to bored piles, irrespective of materials type. In addition to the above statistics, reliability analysis requires the theoretical probability distribution for the random variable under consideration. Accordingly it is demonstrated that the lognormal distribution is a valid theoretical model for the model factor. Another key basis for reliability theory is the notion of randomness of the basic variables. To verify that the variation in the model factor is not explainable by deterministic variations in the database, an investigation of correlation of the model factor with underlying pile design parameters is carried out. It is shown that such correlation is generally weak.

Keywords : pile foundation design; southern African practice; pile load tests; model factor; statistical characterisation.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License