SciELO - Scientific Electronic Library Online

 
vol.83 issue1 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


Journal of the South African Veterinary Association

On-line version ISSN 2224-9435
Print version ISSN 1019-9128

Abstract

VERWOERD, Daniel W.. History of Orbivirus research in South Africa. J. S. Afr. Vet. Assoc. [online]. 2012, vol.83, n.1, pp.01-06. ISSN 2224-9435.

In the early colonial history of South Africa, horses played an important role, both in general transportation and in military operations. Frequent epidemics of African horsesickness (AHS) in the 18th century therefore severely affected the economy. The first scientific research on the disease was carried out by Alexander Edington (1892), the first government bacteriologist of the Cape Colony, who resolved the existing confusion that reigned and established its identity as a separate disease. Bluetongue (BT) was described for the first time by Duncan Hutcheon in 1880, although it was probably always endemic in wild ruminants and only became a problem when highly susceptible Merino sheep were introduced to the Cape in the late 18th century. The filterability of the AHS virus (AHSV) was demonstrated in 1900 by M'Fadyean in London, and that of the BT virus (BTV) in 1905 by Theiler at Onderstepoort, thus proving the viral nature of both agents. Theiler developed the first vaccines for both diseases at Onderstepoort. Both vaccines consisted of infective blood followed by hyper-immune serum, and were used for many years. Subsequent breakthroughs include the adaptation to propagation and attenuation in embryonated eggs in the case of BTV and in mouse brains for AHSV. This was followed by the discovery of multiple serotypes of both viruses, the transmission of both by Culicoides midges and their eventual replication in cell cultures. Molecular studies led to the discovery of the segmented double-stranded RNA genomes, thus proving their genetic relationship and leading to their classification in a genus called Orbivirus. Further work included the molecular cloning of the genes of all the serotypes of both viruses and clarification of their relationship to the viral proteins, which led to much improved diagnostic techniques and eventually to the development of a recombinant vaccine, which unfortunately has so far been unsuitable for mass production.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License