SciELO - Scientific Electronic Library Online

vol.72Control of Electric Dipole Moment using Deformation induced by Functionalization of (5, 0) Zigzag Carbon Nanotubes as Gigahertz OscillatorsSolvent Extraction of a South African Bituminous Coal using a Model Biomass-derived Phenolic Mixture índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados



Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google


South African Journal of Chemistry

versão On-line ISSN 1996-840X
versão impressa ISSN 0379-4350


MAHATA, Sujay et al. Speciation Study of L-ascorbic Acid and its Chelated Cu(II) & Ni(II) Complexes: an Experimental and Theoretical Model of Complex Formation. S.Afr.j.chem. (Online) [online]. 2019, vol.72, pp.229-236. ISSN 1996-840X.

Different species of L-ascorbic acid and their corresponding complex formation ability with Cu(II) and Ni(II) metal ions in aqueous medium has been studied in the pH range from 2.0-12.5. The stability constants of different complexes of Cu(II) and Ni(II) with the bidentate ligand, L-ascorbic acid were determined theoretically using MINIQUARD software. Speciation of ligand and complex of Cu(II)/Ni(II) ascorbate were experimentally investigated by the titration method in solution within this pH range. Different Cu (II) and Ni(II)-L-ascorbic acid species percentages with variation of pH were calculated within the studied pH range with the help of another computer programs SIM and SPECIES. Different species distribution diagrams and the equilibria for the formation of the species were also investigated and at higher pH, ML2 species was found to be the major species in the case of both the metal complexes. All the theoretical possible structures of Cu(II) and Ni(II) complexes with L-ascorbic acid were optimized and square pyramidal and square planer geometry have been evaluated for Cu(II) and Ni(II) respectively by Gaussian09 software. Their corresponding HOMO-LUMO energy and reactivity parameters such as chemical hardness (ç), ionization potential (I), electron affinity (A), electro negativity (χ), chemical potential («), electrophilicity index (ω) have been calculated in order to provide a better understanding of the electronic structure of complexes with the experimental results.

Palavras-chave : Cu(II)and Ni(II) complexes; ascorbic acid; molecular speciation; DFT; reactivity parameters.

        · texto em Inglês     · Inglês ( pdf )


Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons