SciELO - Scientific Electronic Library Online

 
vol.71Molecular Complexes of Boron Trifluoride with some Formyl Compounds, HCOX (X = H, CH3, NH2, OH, F): Effect of Substitution, and Extension to X = Li, BeH and BH2Synthesis, Characterization and Antibacterial Properties of N,N'-Bis(4-dimethylaminobenzylidene)benzene-1,3-diamine as New Schiff Base Ligand and its Binuclear Zn(II), Cd(II) Complexes author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Chemistry

On-line version ISSN 1996-840X
Print version ISSN 0379-4350

Abstract

BENABID, F.Z. et al. Effect of the Mechanical Treatment of Alumina on Thermal, Morphological and Dielectric Properties of LDPE/Al2O3 Composites. S.Afr.j.chem. (Online) [online]. 2018, vol.71, pp.150-154. ISSN 1996-840X.  http://dx.doi.org/10.17159/0379-4350/2018/v71a19.

Composites of LDPE filled with different amounts of alumina Al2O3 were prepared using co-mixing technique and melt-mixing. This technique, which is easy, non-toxic and inexpensive, has been successfully used in our laboratory for different polyolefins/ metal oxides nanocomposites elaboration. Samples containing 0.5,1 and 2 wt% of alumina, were prepared by melt-mixing at 190 °C without any chemical treatment or coupling agent. The effect of alumina treatment was studied. The Al2O3 was first co-mixed with the stearic acid then added to the polymer. The stearic acid melts at 70 °C, thus ensuring the dispersion of the covered filler particles into the polymeric matrix, which leads to better experimental results. The morphological characterization was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties were investigated by thermogravimetric analysis (TGA). The electrical conductivity was also studied. The microstructure-properties relationships were also investigated. The composites prepared with the co-mixed Al2O3 were compared to those prepared with the neat Al2O3. The thermogravimetric (TGA) results showed an enhancement of 55 °C in the thermal stability for the LDPE/Al2O3 composition containing 1 wt% of treated Al2O3. The electrical conductivity results showed also an optimum value of 6.6.10-7 Ω-1 cm-1 for the same composition.

Keywords : Composites; LDPE; Al2O3 nanoparticles; stearic acid; co-mixing method.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License