SciELO - Scientific Electronic Library Online

 
vol.69Simultaneous multi-element electrothermal atomic absorption determination using a low resolution CCD spectrometer and continuum light source: The concept and methodologyA DFT and NBO analysis of the bonding in titanocenyl complexes containing a five-membered L,L'-cyclic ligand: L,L' = O,O'; S,S' or Se,Se' índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

Links relacionados

  • Em processo de indexaçãoCitado por Google
  • Em processo de indexaçãoSimilares em Google

Compartilhar


South African Journal of Chemistry

versão On-line ISSN 1996-840X
versão impressa ISSN 0379-4350

Resumo

HADI, Mojtaba  e  EHSANI, Ali. Anodized Edge-plane Pyrolytic Graphite for Electroanalysis of Pantoprazole in Tablet Dosage Forms and Human Urine Samples. S.Afr.j.chem. (Online) [online]. 2016, vol.69, pp.79-87. ISSN 1996-840X.  http://dx.doi.org/10.17159/0379-4350/2016/v69a10.

Electroanalytical parameters of different graphitic carbon-based electrode materials were compared to select the best one for the pantoprazole electroanalysis. Such parameters include sensitivity, repeatability, residual background current, and signal-to-background current ratio of the analytical response and such electrodes include conventional carbon-based electrodes such as glassy carbon (GC), carbon paste, edge-plane pyrolytic graphite (EPPG), and basal-plane pyrolytic graphite electrodes and film-coated modified GC electrodes with graphitic carbon-based materials such as carbon nanotube, nanographene, carbon black and graphite powder. The EPPG electrode, after applying a simple electrochemical anodization, showed more acceptable analytical performances compared with the other electrodes. Raman spectroscopy was employed to study the surface structural changes that occurred dring the anodic activation. Calibration plot with a good linearity was obtained in the concentration range of 0.2-25 and 0.02-8.5 μΜ, and the detection limit was estimated to be 0.055 and 0.0041 μΜ using cyclic voltammetry and differential pulse voltammetry techniques, respectively. Finally, the electrochemically activated EPPG electrode was used successfully for the determination of pantoprazole in tablet dosage forms and human urine samples with satisfactory results.

Palavras-chave : Edge-plane pyrolytic graphite; graphitic carbon-based electrodes; anodic activation; pantoprazole electroanalysis; nano-graphene; carbon nanotube.

        · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons