SciELO - Scientific Electronic Library Online

 
vol.69Characterization and oxidative addition reactions of different rhodium and iridium triazolato complexesSynthesis and characterization of new bis-symmetrical adipoyl, terepthaloyl, chiral diimido-di-L-alanine diesters and chiral phthaloyl-L-alanine ester of tripropoxy p-tert-butyl calix[4]arene and study of their hosting ability for alanine and Na+ author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

Related links

  • On index processCited by Google
  • On index processSimilars in Google

Share


South African Journal of Chemistry

On-line version ISSN 1996-840X
Print version ISSN 0379-4350

Abstract

CHIPISO, Kudzanai; MBIYA, Wilbes; TRAN, Thai  and  SIMOYI, Reuben H.. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation of N-acetylthiourea by Aqueous Bromate and Acidified Bromate. S.Afr.j.chem. (Online) [online]. 2016, vol.69, pp.27-34. ISSN 1996-840X.  http://dx.doi.org/10.17159/0379-4350/2016/v69a4.

The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess bromate conditions. The reaction displays an induction period before formation of bromine. The stoichiometry of the reaction was determined to be 4:3:4BrO3- + 3(CH3CO)NH(NH2)C=S + 3H2O ―> 4Br- + 3(CH3CO)NH(NH2)C=O + 3SO42- + 6H+ (A) witha complete desulfurization of ACTU to its urea analogue. In excess bromate conditions the stoichiometry was 8:5: 8BrO3- + 5(CH3CO)NH(NH2)C=S + H2O ―> 4Br2 + 5(CH3CO)NH(NH2)C=O + 5SO42- + 2H+ (B). Bromine is derived from an extraneous reaction in which bromide from stoichiometry (A) reacts with excess acidic bromate. The oxidation of ACTU by aqueous bromine gave stoichiometry (C):4Br2(aq) + (CH3CO)NH(NH2)C=S + 5H2O ―> 8Br- + (CH3CO)NH(NH2)C=O + SO42- + 10H+. Reaction (C) is much faster than reactions (A) and (B), with a lower limit bimolecular rate constant of 2.1 X105 M-1 s-1 such that appearance of bromine signals complete consumption of ACTU. We were unable to trap any intermediate sulfur oxo-acids of ACTU on its oxidation pathway to N-acetylurea. As opposed to other substituted thioureas, none of its intermediates were stable enough to be isolated and detected.

Keywords : Kinetics; mechanisms; oxyhalogen chemistry; s-oxygenation; bioactivation.

        · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License