SciELO - Scientific Electronic Library Online

vol.67The determination of 11B/10B and 87Sr/86Sr isotope ratios by quadrupole-based ICP-MS for the fingerprinting of South African wineDegradation of endosulfan I and endosulfan II in the aquatic environment: A proposed enzymatic kinetic model that takes into account adsorption/desorption of the pesticide by colloidal and/or sediment particles author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand



Related links

  • On index processCited by Google
  • On index processSimilars in Google


South African Journal of Chemistry

On-line version ISSN 1996-840X
Print version ISSN 0379-4350


ZARANYIKA, Mark F.  and  MLILO, Justin. Speciation and persistence of dimethoate in the aquatic environment: characterization in terms of a rate model that takes into account hydrolysis, photolysis, microbial degradation and adsorption of the pesticide by colloidal and sediment particles. S.Afr.j.chem. (Online) [online]. 2014, vol.67, pp.233-240. ISSN 1996-840X.

The kinetics of the degradation of dimethoate in an aquatic microcosm ecosystem, and a distilled water control, charged with the pesticide was studied over a period of 90 days. The concentration of dimethoate was monitored in the distilled water control, as well as the water phase and sediment phase of the experiment. The loss of the pesticide after a given time period was calculated and plotted as a function of time. Biphasic linear rates of dimethoate degradation were observed for both the water phase (3.12 and 0.358 mL -1 day-1, respectively) and the sediment phase (108 and 1.03 g-1 day-1, respectively) in the experimental microcosm, as well as the distilled water control (0.694 and 0.0388 mL -1 day-1, respectively). The linear rates of degradation in distilled water are attributed to hydrolysis and photochemical degradation. The biphasic linear rates of degradation in the experimental microcosm are attributed to microbial degradation of pesticide adsorbed by sediment or colloidal particles, and an enzymatic kinetics model is presented to account for the observed kinetics. The factors that affect the rates of degradation, possible dimethoate pollution remediation strategies, and characterization of the different speciation forms in terms of rates of degradation and apparent adsorption/desorption thermodynamic properties, are discussed.

Keywords : Dimethoate; degradation rates; pesticide; adsorption [desorption kinetics]; chemisorption.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License